Atomic structure
Atomic structure

source : chem.Libretexts.org

Atomic structure numerical-

Question 1) Calculate the shortest and longest wavelength in H- spectrum of Lyman series. RH = 109678 cm-1 ?

Solution )

For Lyman series n1 = 1

For shortest λ of Lyman series , energy difference in two levels showing transition should be maximum, n2 = ∞

1 / λ =  RH [( 1/ n12) – ( 1/ n22)]

1 / λ =  109678  [( 1/ 12) – ( 1/∞ 2)] 

1/λ =  109678

λ =  0.00000912

λmin = 912 x 10-8  cm = 912 Å  Ans.

For longest λ of Lyman series , energy difference in two levels showing transition should be minimum, n2 = 2

1 / λ =  RH [( 1/ n12) – ( 1/ n22)]

1 / λ =  109678  [( 1/ 12) – ( 1/22)] 

1/λ =  109678 x 3 / 4

λ =  4 / 109678 x 3 = 0.00001216

λmax= 1216 x 10-8  cm = 1216 Å  Ans.

Question 2) Calculate the Rydberg constant if He + ions are known to have the wavelength difference between the first ( of the longest wavelength ) lines of Balmer and Lyman series equal to 133.7 nm ?

Solution )

For Balmer series , n1 = 2 ,n2 = 3, Z for He = 2

1 / λ1 = Z2 RH [( 1/ n12) – ( 1/ n22)]

1 / λ1 =  Z2RH[( 1/ 2 2) – ( 1/ 32)]

λ1 =   36/ 5 Z2 RH

For Lyman series , n1 = 1 ,n2 = 2, Z for He = 2

1 / λ2 = Z2 RH [( 1/ 1 2) – ( 1/ 22)]

λ2 =   4 / 3 Z2 RH

Given , λ1 – λ2 = 133.7   nm= 133.7  x 10 -9 m

putting the values of  λ1 and  λ2,

( 36/ 5 Z 2 RH ) – (4/ 3 Z 2 RH) = 133.7 x 10-9

(1 /Z 2 RH) [ (36/5) – (4/3)] = 133.7  x 10 -9

Z for He = 2,

(1 /4 RH) [ (88 / 15)] = 133.7  x 10 -9

R H = 0.01969832 x 10 9 = 1.096 x 10 7 m -1

R H = 1.096 x 10 5  cm -1  Ans.

Question 3) Calculate the wavelength and energy of the radiation emitted for the electronic transition from infinite to stationary state of hydrogen atom ?

Solution )

RH =  1.09678 x 10 7 m -1 ,  n1 = 1 , n2 = 

1 / λ = RH [( 1/ n12) – ( 1/ n22)]

1 / λ =  1.09678 x 107 [( 1/ 12) – ( 1/2)] 

1/λ =  1.09678 x 107

λ =  1 / 1.09678 x 107 = 0.00001216

λ = 9.11 x 10-8  m  Ans.

E = h c / λ

h = 6.625 x 10 -34  J sec. , c = 3 x 10 8 m / sec

E = 6.625 x 10 -34 x  3 x 10 8 / 9.11 x 10-8

Energy = 2.17 x 10 -18 J

Question 4) Calculate the radius of Bohr’s third orbit in Li 2+ ion ?

Solution )

rn = 0.529 n 2 / Z Å

n = 3 , Z = 3

r3 =  0.529 x 3 x 3/ 3

r3 = 1.587 Å Ans.

Question 5) Show that the Balmer series occurs between 3645 Å and 6563 Å . RH = 1.0968 x 10 7 m -1.

Solution )

For Balmer series , n1 = 2, n2 = 3 , 4 , 5…….

For maximum wavelength , n1 = 2 , n2 = 3

1 / λ max = RH [( 1/ n12) – ( 1/ n22)]

          =  1.09678 x 10 7 [( 1/ 22) – ( 1/32)] 

          =  1.09678 x 10 7 x 5 / 36

λmax  =  36 / 1.09678 x 10 7  x 5= 6.564 x 10 7 m

λ max = 6564 Å  Ans.

For minimum wavelength , n1 = 2 , n2 =

1 / λ min = RH [( 1/ n12) – ( 1/ n22)]

          =  1.09678 x 10 7 [( 1/ 22) – ( 1/∞2)] 

          =   1.09678 x 10 7 / 4

λmin  =  4  / 1.09678 x 10 7  = 3.647 x 10 7 m

λ min = 3647  Å  Ans.